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Introduction



Generalising the gradient descent method

xk+1 = xk − αk∇f (xk)

We want to generalise this method to globally minimise some
classes of nonconvex functions.
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The Subgradient Method

Let f be convex. The (sub)gradient method step is:

xk+1 = xk − αk∇f (xk)

= argmin
(
〈∇f (xk), x〉+

1
2ck

‖x − xk‖2
)

where gk ∈ ∂f (xk).
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Proximal point method

The subgradient method is a linearisation of the proximal
point method:

xk+1 = proxck,f (xk)

where proxck,f (xk) = argmin
x∈X

f (x) + 1
2ck

‖x − xk‖2
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Bregman-based methods



Bregman Divergence

Let φ be a continuously differentiable strongly convex function.

Definition (Bregman Divergence (Brègman 1965))
The Bregman divergence is the function

Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x − y〉.

y x

Dφ(x, y)
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Bregman Proximal Point Method (Bregman 1967)

xk+1 = argmin
x∈X

f (x) + 1
ck
Dφ(x, xk)
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Mirror Descent Method (Nemirovsky and Yudin 1983)

uk ∈ ∂f (xk)

xk+1 = argmin
x∈X

〈uk, x〉+
1
ck
Dφ(x, xk),
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Generalised Bregman Divergence

Let φ be a strongly convex function.

Definition (Generalised Bregman Divergence (Kiwiel 1997a))
The generalised Bregman divergence is a function

Dλ
φ(x, y) = φ(x)− φ(y)− 〈λ, x − y〉.

where λ ∈ ∂φ(y).

Dλ
ϕ(x, y) ≥ 0 for any x, y with equality iff x = y.
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Generalised Bregman Proximal Point Method (Kiwiel 1997b)


xk+1 = argmin

x∈X
f (x) + 1

ck
Dλk
φ (x, xk)

λk+1 = ckuk − λk, where uk ∈ ∂f (xk).
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Mirror Descent Method (Díaz Millán and U. 2025)


uk ∈ ∂f (xk)

xk+1 = argmin
x∈X

〈uk, x〉+
1
ck
Dλk
φ (x, xk),

λk+1 = ckuk − λk
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Assumptions for convergence of Mirror Descent

• φ strongly convex:

φ(y) ≥ φ(x) + 〈u, x〉+ σ‖y − x‖2,∀x, y ∈ X,u ∈ ∂φ(x)

• f convex and continuous.
• ‖u‖∗ bounded for all u ∈ ∂f (x), x ∈ X.
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Abstract Convexity



Convexity

A lower semi-continuous convex function can be written as a
supremum of affine functions:

f (x) := sup
(a,b)∈U

〈a, x〉+ b
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Abstract Convexity

An abstract convex function can be written as a supremum of
abstract affine functions.

Definition (abstract convex function (Kutateladze and Rubinov
1972, 1976))
Let L be a family of functions defined on X. The function
f : X → R is called (L,X)-convex if there exists U ⊂ L such that

f (x) := sup
u∈U

u(x)
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Abstract convex function: example

L = {ax2 + bx : a,b ∈ R}
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Abstract Subdifferential

Let L be a family of functions and f a (L, X)-convex function.

Definition (Abstract Subdifferential (Rubinov 2000))
∂Lf (x) = {u ∈ L : f (y) ≥ f (x) + u(y)− u(x), ∀y ∈ X}
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Algorithms for abstract convex minimisation

1. Cutting Angle Method (Andramonov, Rubinov, and Glover
1999): Lipschitz continuous functions.

2. Proximal Point Method (Bednarczuk, Lorenz, and Tran
2025): Weakly convex functions.
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Abstract Bregman proximal
methods



Abstract Bregman Distance

Definition (Abstract Bregman Divergence (Grasmair 2010))

Let φ be a (L, X)-function and y ∈ X, and let λ ∈ ∂Lφ(y). The
L-Bregman divergence from y with respect to λ as

Dλ
φ(x, y) = φ(x)− φ(y)− (λ(x)− λ(y))
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Abstract Bregman Proximal Point Method (Díaz Millán and U.
2025)


xk+1 ∈ Argmin

x∈X
f (x) + 1

ck
Dλk
φ (x, xk)

λk+1 = ckuk − λk, where uk ∈ ∂Lf (xk).
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Assumptions

1. L is a linear space.
2. Sum Rule: ∂Lφ(x) + ∂Lf (x) = ∂L(φ+ f )(x).
3.

∑∞
k=1 ck = ∞.
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Abstract Mirror Descent Method (Díaz Millán and U. 2025)

Let φ and f be L-convex functions. We want to minimise f (x).


uk ∈ ∂Lf (xk)

xk+1 ∈ Argmin
x∈X

uk(x) +
1
ck
Dλk
φ (x, xk),

λk+1 = ckuk − λk
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Assumptions

1. L− L = L.
2. u(x)− u(y) ≤ Dλ

φ(x, y) + φ∗(u).
Classical case: 〈u, x − y〉 ≤ 1/2‖x − y‖2 + 1/2‖u‖2∗.

3. ∃α > 1 : φ(cu) ≤ cαφ∗(u) for any c ≥ 0.
Classical case: φ is strongly convex implies α = 2.

4. φ∗(u) bounded for any u ∈ ∂Lf (x), any x ∈ X.
Classical case: 1/2‖u‖2∗ is bounded.

5.
∑∞

i=1 ck = ∞ and
∑∞

i=1 cαk < ∞.
6. Very minimal assumption on L.
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Numerical Experiments



Rosenbrock function

L = {a‖x‖2 + 〈b, x〉 : (a,b) ∈ R×Rn}

φ(x) = ‖x‖3

f (x) = (1− x)2 + a(y − x2)2,a = 100.
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Iterations

0 20 40 60 80 100

10−2

10−1

100

101

102

103

k

lo
g(
f(
x k
))

x0 = (0.5, 1.2)
x0 = (0.75, 2)
x0 = (2.5, 2.2)
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Example (Bui et al. 2021)

Let L = {ax2 + b : a,b ∈ R} and let f (x) = f1(x) + f2(x) + f3(x)
where

f1(x) = x4 − x2

f2(x) = 1− 2|x|

f3(x) =

1− 2|x| if − 1
2 ≤ x ≤ 1

2 ,

0 otherwise.
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The Bregman divergence

φ(x) = −|x|.

The Bregman divergence is then:

Dλ
φ(x, y) = −|x|+ |y|+ x2 − y2

2|y|

• Well defined for any x and any y 6= 0.
• Dλ

φ(x, y) = Dλ
φ(x,−y) for any x and y 6= 0.

25/30



Numerical Experiments
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