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INTRODUCTION



GENERALISING THE GRADIENT DESCENT METHOD

Xp1 = X — aV(Xg)
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GENERALISING THE GRADIENT DESCENT METHOD

Xp1 = X — aV(Xg)

We want to generalise this method to globally minimise some
classes of nonconvex functions.
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THE SUBGRADIENT METHOD

Let f be convex. The (sub)gradient method step is:

Xk1 = Xp — V[ (Xg)

. .
Xp+1 Xk
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THE SUBGRADIENT METHOD

Let f be convex. The (sub)gradient method step is:
Xp+1 = Xp — ARGk

where g, € 9f (X).
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THE SUBGRADIENT METHOD

Let f be convex. The (sub)gradient method step is:

Xp41 = Xp — CkGp
. 1
= argmin (<Q/?,X> + EHX - Xie||2)

where g, € 9f (Xg).

/
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PROXIMAL POINT METHOD

The subgradient method is a linearisation of the proximal
point method:

Xp41 = prOXth(X;?)

1
where prox., r(xr) = argmin f(x) + —||x — Xg||?
" xeX 2Ck
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PROXIMAL POINT METHOD

The subgradient method is a linearisation of the proximal
point method:

Xp41 = prOXth(X;?)

1 )
where prox, (Xr) = argmin f(X) + 5 ||x — x;[|*
" xeX 2Ck
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BREGMAN-BASED METHODS



BREGMAN DIVERGENCE

Let ¢ be a continuously differentiable strongly convex function.

Definition (Bregman Divergence (Brégman 1965))
The Bregman divergence is the function

Dy(X,Y) = o(x) = ¢(y) = (Vo(y), x = ¥).

D@(va)

N
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BREGMAN PROXIMAL POINT METHOD (BREGMAN 1967)

1
Xpy1 = argmin f (x) + — Dy (X, Xg)
xeX Cr
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MIRROR DESCENT METHOD (NEMIROVSKY AND YUDIN 1983)

ur, € Of (Xk)
1
Xppr = argmin(Up, X) + —Dg (X, Xg),
xXeX Cr
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GENERALISED BREGMAN DIVERGENCE

Let ¢ be a strongly convex function.

Definition (Generalised Bregman Divergence (Kiwiel 1997a))
The generalised Bregman divergence is a function

D3(X,Y) = d(x) — d(y) — (A, x —y).

where X € 9¢(y).
D} (x,y) > 0 for any x,y with equality iff x = y.
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GENERALISED BREGMAN PROXIMAL POINT METHOD (KIWIEL 1997B)

1
X1 = argmin f(x) + — D3 (X, Xp)
xeX Cr

Aki1 = CRUR — Ap, where uy, € 9f (xg).
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MIRROR DESCENT METHOD (DiAZ MILLAN AND U. 2025)

Up € Of (X¢)
1
Xpyq = argmin(Uy, X) + —D;h(x,xk),
xeX Cr

Ak1 = CrUk — A
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ASSUMPTIONS FOR CONVERGENCE OF MIRROR DESCENT

- ¢ strongly convex:
$(y) = ¢(x) + (U, X) + ally = x|, %,y € X, u € dg()

- f convex and continuous.
- |Jull« bounded for all u € 9f (x), x € X.
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ABSTRACT CONVEXITY




CONVEXITY

A lower semi-continuous convex function can be written as a
supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu
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CONVEXITY

A lower semi-continuous convex function can be written as a

supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu

/
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CONVEXITY

A lower semi-continuous convex function can be written as a

supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu

v
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CONVEXITY

A lower semi-continuous convex function can be written as a
supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu

/
2
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CONVEXITY

A lower semi-continuous convex function can be written as a
supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu

N =
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CONVEXITY

A lower semi-continuous convex function can be written as a
supremum of affine functions:

f(x) = sup (a,x)+b
(a,b)eu
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ABSTRACT CONVEXITY

An abstract convex function can be written as a supremum of
abstract affine functions.
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ABSTRACT CONVEXITY

An abstract convex function can be written as a supremum of
abstract affine functions.

Definition (abstract convex function (Kutateladze and Rubinov

1972,1976)) , .
Let L be a family of functions defined on X. The function

f: X —= Ris called (LX)-convex if there exists U C L such that

£(x) = sup u(x)

ueu
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ABSTRACT CONVEX FUNCTION: EXAMPLE

L={ax*+bx:a,bcR}
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ABSTRACT CONVEX FUNCTION: EXAMPLE

L:{ax2+bx:a,beR}

0.5 a

STV

\
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ABSTRACT SUBDIFFERENTIAL

Let L be a family of functions and f a (L, X)-convex function.

Definition (Abstract Subdifferential (Rubinov 2000))
af(x)={ueLl:fly)>f(x)+u(y) —ux),vy € X}
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ALGORITHMS FOR ABSTRACT CONVEX MINIMISATION

1. Cutting Angle Method (Andramonov, Rubinov, and Glover
1999): Lipschitz continuous functions.

2. Proximal Point Method (Bednarczuk, Lorenz, and Tran
2025): Weakly convex functions.
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ABSTRACT BREGMAN PROXIMAL
METHODS




ABSTRACT BREGMAN DISTANCE

Definition (Abstract Bregman Divergence (Grasmair 2010))

Let ¢ be a (L,X)-function and y € X, and let A € 9. ¢(y). The
L-Bregman divergence from y with respect to A as

DH(X,¥) = ¢(x) — d(y) — (AX) — A(¥))
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ABSTRACT BREGMAN PROXIMAL POINT METHOD (DiAZ MILLAN AND U.

2025)

1
Xe41 € Argminf(X) + —D}*(X, X)
xeX Cr

A1 = CrlUg — Mgy where ug, € 0,1 (k).
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ASSUMPTIONS

1. Lis a linear space.
2. Sum Rule: 9o(x) + af (x) = Al + f)(X).

3. ZEO:1 Cr = 0Q.
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ABSTRACT MIRROR DESCENT METHOD (DiAZ MILLAN AND U. 2025)

Let ¢ and f be L-convex functions. We want to minimise f(x).

Up € Oif (Xk)
1
Xpi1 € Argmin Up(x) + —D;”(X,X;?),
xeX Cr
Akt = CrUR — Ag
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ASSUMPTIONS

1. L—L=1L
2. u(x) — u(y) < D)(x,y) + ¢*(u).

Classical case: (u,x —y) < 1/2||x — y||2 + 1/2||ul|2.
3. Ja > 1: ¢leu) < c¥¢*(u) for any ¢ > 0.

Classical case: ¢ is strongly convex implies o = 2.

4. ¢*(u) bounded for any u € 9,f(x), any x € X.
Classical case: 1/2||u||? is bounded.

5 Y 2ick=o00and > 2, cp < oo.

6. Very minimal assumption on L.

21/30



NUMERICAL EXPERIMENTS




ROSENBROCK FUNCTION

L = {a||x|]* + (b,x) : (a,b) € R x R"}
¢(x) = [Ix|I°
f(x) = (1—x)*> +a(y — x*)?,a = 100.

1,000 (1

500 |

22/30




ROSENBROCK FUNCTION

L = {a||x|]* + (b,x) : (a,b) € R x R"}
¢(x) = [Ix|I°
f(x) = (1—x)*> +a(y — x*)?,a = 100.

1,000 (1

500 [

22/30




ITERATIONS
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EXAMPLE (BUI ET AL. 2021)

Let L = {ax? + b : a,b € R} and let f(x) = f1(x) + fo(x) + f3(X)
where

filx) =x* — 2

falx) =1 -2}

=25 WF=Ld<gxsl
fa(X){ ’ ’

0 otherwise.
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THE BREGMAN DIVERGENCE

The Bregman divergence is then:

XZ _y2
2y

DY(X,y) = —IX| + ly| +

- Well defined for any x and any y # 0.
- D3(x,y) = D)(x, —y) for any x and y # 0.

25/30



NUMERICAL EXPERIMENTS

f(X) + Dg(X,Xk) Dé‘)(X,Xk)
_3\1/11 T 3 _‘3 = =1 l 17 3
2 2 2 2 2 2 2 2
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NUMERICAL EXPERIMENTS

f(X) + Dg(xaxk) DQ\)(Xan)
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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NUMERICAL EXPERIMENTS
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